Standard Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Sewer and Industrial Pressure Pipe¹

This standard is issued under the fixed designation D 3754; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

. Scope

11 This specification covers machine-made fiberglass pipe, in (200 mm) through 156 in. (4000 mm), for use in pressure stems for conveying sanitary sewage, storm water, and many distrial wastes, and corrosive fluids. Both glass-fibermored thermosetting-resin pipe (RTRP) and glass-fibermored polymer mortar pipe (RPMP) are fiberglass pipes. Its standard is suited primarily for pipes to be installed in ined applications, although it may be used to the extent micable for other installations such as, but not limited to, ding, tunnel lining and slip-lining and rehabilitation of disting pipelines. Pipe covered by this specification is inrated to operate at internal gage pressures of 450 psi (3103 h) or less.

 $b\pi$ 1—For the purposes of this standard, polymer does not include rel polymers.

12 The values given in inch-pound units are to be regarded the standard. The values given in parentheses are provided rinformation purposes only.

Note 2-There is no similar or equivalent ISO standard.

13 The following precautionary caveat pertains only to the est method portion, Section 8, of this specification: *This* undard does not purport to address all of the safety concerns, (my, associated with its use. It is the responsibility of the user (this standard to establish appropriate safety and health nucleos and determine the applicability of regulatory limitains prior to use.

Referenced Documents

2.1 ASTM Standards: ²

C33 Specification for Concrete Aggregates

- C 581 Practice for Determining Chemical Resistance of Thermosetting Resins Used in Glass-Fiber-Reinforced Structures Intended for Liquid Service
- D 638 Test Method for Tensile Properties of Plastics
- D 695 Test Method for Compressive Properties of Rigid Plastics
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating MaterialsD 883 Terminology Relating to Plastics
- D 1600 Terminology for Abbreviated Terms Relating to Plastics
- D 2290 Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method
- D 2412 Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading
- D 2584 Test Method for Ignition Loss of Cured Reinforced Resins
- D 2992 Practice for Obtaining Hydrostatic or Pressure Design Basis for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings
- D 3567 Practice for Determining Dimensions of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting Resin) Pipe and Fittings
- D 3681 Test Method for Chemical Resistance of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe in a Deflected Condition
 - D 3892 Practice for Packaging/Packing of Plastics
 - D 4161 Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe Joints Using Flexible Elastomeric Seals
 - F 412 Terminology Relating to Plastic Piping Systems
- F 477 Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe
- 2.2 ISO Standard:
- ISO 1172 Textile Glass Reinforced Plastics—Determination of Loss on Ignition³
- 2.3 AWWA Standard:

mit @ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

This specification is under the jurisdiction of ASTM Committee D20 on as and is the direct responsibility of Subcommittee D20.23 on Reinforced as Pping Systems and Chemical Equipment.

ument edition approved Nov. 1, 2006. Published November 2006. Originally med in 1979. Last previous edition approved 2004 as D 3754 – 04.

For referenced ASTM standards, visit the ASTM website, www.astm.org, or an ASTM Customer Service at service@astm.org. For *Annual Book of ASTM tands* volume information, refer to the standard's Document Summary page on ASTM website.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

TABLE 1 General Designation Requirements for Fiberglass Pressu	e Pipe
--	--------

Desig- nation	Property	y Cell Limits ^A							Richson DV	1500
1	Type 1 glass-fiber-reinforced thermosetting polyester ^B resin mortar (RPMP polyester) ^B		thermose	2 glass-fiber-reinforced thermosetting polyester ⁸ resin (RTRP polyester) ⁸			3 glass-fiber-reinforced thermosetting epoxy resin mortar (RPMP epoxy)		4 per-reinforo ing epoxy RP epoxy)	
2	Liner	1 reinforced therm	oset liner	non-reinfo	2 prced therm	oset liner	3 thermopla		ia namai	4 o liner
3	Grade	1 Polyester resir surface layer— reinforced ^B	surfa	2 ester ^B resin ace layer— einforced ^B	sand	3 ter ^B resin and surface layer preinforced	4 epoxy r surface la reinford	iyer— s	5 epoxy resin surface layer— nonreinforced	6 No su lay
4	Class ^C	C50 C100	C15	50	C200	C250	C300	C350	C400	C4
5	Pipe Stiffn psi (kP		A 9 (62)		B 18 (12	4)	36	C (248)	72	D (496) ^{ABC}

^A The cell-type format provides the means of identification and specification of piping materials. This cell-type format, however, is subject to misapplication unobtainable property combinations can be selected if the user is not familiar with commercially available products. The manufacturer should be consulted. ^B For the purposes of this standard, polyester includes vinyl ester resin.

^C Based on operating pressure in psig (numerals).

AWWA C-950 Glass-Fiber Reinforced Thermosetting Resin Pressure Pipe⁴

3. Terminology

3.1 Definitions:

3.1.1 General-Definitions are in accordance with Terminology D 883 or Terminology F 412 and abbreviations with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 fiberglass pipe-a tubular product containing glass fiber reinforcements embedded in or surrounded by cured thermosetting resin. The composite structure may contain aggregate, granular or platelet fillers, thixotropic agents, pigments, or dyes. Thermoplastic or thermosetting liners or coatings may be included.

3.2.2 flexible joint-a joint that is capable of axial displacement or angular rotation, or both.

3.2.3 industrial pipe-pipe designed for internal, or external environments, or both, commonly encountered in industrial piping systems used for many process solutions or effluents.

3.2.4 liner-a resin layer, with or without filler or reinforcement, or both, forming the interior surface of the pipe.

3.2.5 qualification test-one or more tests used to prove the design of a product. Not a routine quality control test.

3.2.6 reinforced polymer mortar pipe-a fiberglass pipe with aggregate.

3.2.7 reinforced thermosetting resin pipe-a fiberglass pipe without aggregate.

3.2.8 rigid joint-a joint that is not capable of axial displacement or angular rotation.

3.2.9 surface layer-a resin layer, with or without filler or reinforcement, or both, applied to the exterior surface of the pipe structural wall.

4. Classification

4.1 General—This specification covers fiberglass sewer and industrial pressure pipe defined by raw materials in the structural wall (type) and liner, surface layer material (m operating pressure (class), and pipe stiffness. Table 1 list types, liners, grades, classes, and stiffnesses that are corr

NOTE 3-All possible combinations of types, liners, grades, d and stiffness may not be commercially available. Additional types grades, and stiffnesses may be added as they become comm available. The purchaser should determine for himself or consult manufacturer for the proper class, type, liner, grade, and stiffness to be used under the installation and operating conditions that will a the project in which the pipe is to be used.

4.2 Designation Requirements—The pipe materials nation code shall consist of the standard designation, D 3754, followed by type, liner, and grade in arabic num class by the letter C with two or three arabic numerals, and stiffness by a capital letter. Table 1 presents a summary designation requirements. Thus a complete material code consist of ASTM D 3754, three numerals, C ... and two or numerals, and a capital letter.

NOTE 4-Examples of the designation codes are as follows: (1). D 3754-1-1-3-C50-A for glass-fiber-reinforced aggregate and pi resin mortar pipe with a reinforced thermoset liner and an unrei polyester resin and sand surface layer, for operation at 50 psi (34 and having a minimum pipe stiffness of 9 psi (62 kPa). (2) D 3754-4-2-6-C200-C for glass-fiber-reinforced epoxy resin pipe unreinforced thermoset liner, no surface layer, for operation at (1380 kPa) and having a minimum pipe stiffness of 36 psi (2481 pling with suppleme

NOTE 5-Although the "Form and Style for ASTM Standards" requires that the type classification be roman numerals, it is required available. that few companies have stencil-cutting equipment for this styled and it is therefore acceptable to mark the product type in arabic m

5. Materials and Manufacture

5.1 General-The resins, reinforcements, colorants, and other materials, when combined as a composite stru shall produce a pipe that shall meet the performance m. 5.5 Gaskets-Elas ments of this specification.

5.2 Wall Composition—The basic structural wall com tion shall consist of a thermosetting resin, glass-fiber rein ment, and, if used, an aggregate filler.

5.2.1 Resin—A thermosetting polyester or epoxy resin and leave or without filler.

5.2.2 Aggregateirements of Spec r gradation shall 5.2.3 Reinforcen ith a sizing comp

5.3 Liner and Si oth, when incorpo emical and struct

5.4 Joints—The ovide for fluid tig rticular type of jo xible or rigid de sign conditions.

5.4.1 Unrestraine internal pressure bu

5.4.1.1 Coupling groove either on elastomeric gasket t provide watertightne 5.4.1.2 Mechanic 5.4.1.3 Butt Joint 5.4.1.4 Flanged . 5.4.2 Restrainednal pressure and lor 5.4.2.1 Joints sim restraining elements 5.4.2.2 Butt Joint 5.4.2.3 Bell-and-5.4.2.4 Bell-and-S of adhesive-bonded

follows: 5.4.2.4.1 Tapered manufactured with a a tapered spigot and 5.4.2.4.2 Straight

manufactured with a with an untapered sp 5.4.2.4.3 Tapered

that is manufactured untapered spigot and 5.4.2.5 Flanged J 5.4.2.6 Threaded

5.4.2.7 Mechanica

Note 6—Other types

NOTE 7-Restrained j to greater than those exp is cautioned to take in encountered in the antic regarding the suitability with restrained joint syst

pipe, shall conform to

⁴ Available from American Water Works Association (AWWA), 6666 W. Quincy Ave., Denver, CO 80235, http://www.awwa.org.

Aggregate—A siliceous sand conforming to the reents of Specification C 33, except that the requirements that on shall not apply.

Reinforcement—A commercial grade of glass fiber sting compatible with the resin used.

liner and Surface Layers—A liner or surface layer, or *then* incorporated into or onto the pipe shall meet the *val* and structural requirements of this specification.

loints—The pipe shall have a joining system that shall *left* fluid tightness for the intended service condition. A *lar* type of joint may be restrained or unrestrained and *e* or rigid depending on the specific configuration and conditions.

Unrestrained—Pipe joints capable of withstanding pressure but not longitudinal forces.

Il Coupling or Bell-and-Spigot Gasket Joints, with a either on the spigot or in the bell to retain an peric gasket that shall be the sole element of the joint to a watertightness. For typical joint details see Fig. 1.

12 Mechanical Coupling Joint, with elsastomeric seals. 13 Butt Joint, with laminated overlay

1.4 Flanged Joint, both integral and loose ring.

2 Restrained—Pipe joints capable of withstanding interresure and longitudinal tensile loads.

1.1 Joints similar to those in 5.4.1.1 with supplemental image elements.

122 Butt Joint, with laminated overlay.

23 Bell-and-Spigot, with laminated overlay.

24 *Bell-and-Spigot*, adhesive-bonded-joint: Three types heive-bonded joints are premitted by this standard as

124.1 *Tapered bell-and-spigot*, an adhesive joint that is factured with a tapered socket for use in conjunction with red spigot and a suitable adhesive.

124.2 Straight bell-and-spigot, an adhesive joint that is factured with an untapered socket for use in conjunction mutapered spigot and a suitable adhesive.

124.3 *Tapered bell and straight spigot*, an adhesive joint s manufactured with a tapered socket for use with an ered spigot and a suitable adhesive.

125 Flanged Joint, both integral and loose ring.

2.6 Threaded Joints.

27 Mechanical Coupling, an elastomeric sealed couwith supplemental restraining elements.

t 6-Other types of joints may be added as they become commervailable.

¹⁷ --Restrained joints typically increase service loads on the pipe ater than those experienced with unrestrained joints. The purchaser atomed to take into consideration all conditions that may be intered in the anticipated service and to consult the manufacturer ling the suitability of a particular type and class of pipe for service estrained joint systems.

Gaskets—Elastomeric gaskets, when used with this shall conform to the requirements of Specification F 477,

except that composition of the elastomer shall be as agreed upon between the purchaser and the supplier for the particular exposure to oily or aggressive-chemical environments.

6. Requirements Requirements

6.1 Workmanship:

6.1.1 Each pipe shall be free from all defects including indentations, delaminations, bubbles, pinholes, cracks, pits, blisters, foreign inclusions, and resin-starved areas that due to their nature, degree, or extent, detrimentally affect the strength and serviceability of the pipe. The pipe shall be as uniform as commercially practicable in color, opacity, density, and other physical properties.

6.1.2 The inside surface of each pipe shall be free of bulges, dents, ridges, or other defects that result in a variation of inside diameter of more than $\frac{1}{8}$ in. (3.2 mm) from that obtained on adjacent unaffected portions of the surface. No glass-fiber reinforcement shall penetrate the interior surface of the pipe wall.

6.1.3 Joint sealing surfaces shall be free of dents, gouges, or other surface irregularities that will affect the integrity of the joints.

6.2 Dimensions:

6.2.1 *Pipe Diameters*—The pipe shall be supplied in the nominal diameters shown in Table 2 or Table 3. The pipe diameter tolerances shall be as shown in Table 2 or Table 3, when measured in accordance with 8.1.1.

6.2.2 Lengths—The pipe shall be supplied in nominal lengths of 10, 20, 30, 40, and 60 ft (3.05, 6.10, 9.15, 12.19, and 18.29 m). The actual laying length shall be the nominal length ± 2 in. (± 51 mm), when measured in accordance with 8.1.2. At least 90 % of the total footage of any one size and class, excluding special-order lengths, shall be furnished in the nominal lengths specified by the purchaser. Random lengths, if furnished, shall not vary from the nominal lengths by more than 5 ft (1.53 m), or 25 %, whichever is less.

6.2.3 *Wall Thickness*—The average wall thickness of the pipe shall not be less than the nominal wall thickness published in the manufacturer's literature current at the time of purchase, and the minimum wall thickness at any point shall not be less than 87.5 % of the nominal wall thickness when measured in accordance with 8.1.3.

6.2.4 Squareness of Pipe Ends—All points around each end of a pipe unit shall fall within $\pm \frac{1}{4}$ in. (6.4 mm) or ± 0.5 % of the nominal diameter of the pipe, whichever is greater, to a plane perpendicular to the longitudinal axis of the pipe, when measured in accordance with 8.1.4.

6.3 Chemical Requirements:

6.3.1 Sanitary Sewer Service :

6.3.1.1 Long-Term—Pipe specimens, when tested in accordance with 8.2.1 shall be capable of being deflected, without failure, at the 50 year strain level given in Table 4 when exposed to 1.0 N sulfuric acid.

FIG. 1 Typical Joints

7100000000000

TABLE 2 Nominal Inside Diameters (ID) and Tolerances Inside Diameter Control Pipe

Nominal		Nominal Metric	ID Ran	ge, ^{<i>B</i>} mm	Tolerance ^B on	Note—The external
Nominal Diameter, ^A in.	Tolerances, in.	Diameter, ^B mm	Minimum	Maximum	– Declared ID, mm	maximum and minimu tolerances at the spigo
8	±0.25	200	196	204	±1.5	
10	±0.25	250	246	255	±1.5	Nominal
12	±0.25	300	296	306	±1.8	
14	±0.25	400	396	408	±2.4	Pipe Size, in.
15	±0.25	500	496	510	±3.0	
16	±0.25	600	595	612	±3.6	8
18	±0.25	700	695	714	±4.2	
20	±0.25	800	795	816	±4.2	10
21	±0.25	900	895	918	±4.2	all of the sufficient
24	±0.25	1000	995	1020	±5.0	ess (F/Δy) specified
27	±0.27	1200	1195	1220	±5.0	12
30	±0.30	1400	1395	1420	±5.0	
33	±0.33	1600	1595	1620	±5.0	14
36	±0.36	1800	1795	1820	±5.0	deflection level B
39	±0.39	2000	1995	2020	±5.0	26 000000 1016
42	±0.42	(2200)	2195	2220	±6.0	10
45	±0.45	2400	2395	2420	±6.0	
48	±0.48	(2600)	2595	2620	±6.0	elizate li cov 18
51	±0.51	2800	2795	2820	±6.0	20
54	±0.54	(3000)	2995	3020	±6.0	24
60	±0.60	3200	3195	3220	±7.0	30
66	±0.66	(3400)	3395	3420	±7.0	
72	±0.72	3600	3595	3620	±7.0	not (everbabien 36 min)
78	±0.78	(3800)	3795	3820	±7.0	belandia a be 42 anos
84	±0.84	4000	3995	4020	±7.0	48
90	±0.90		and still gene they are	Data da La Catal	nighter but s	ogia lla dol ma 54
96	±0.96	- of c.S.T. Merce (Diabare	and the second second second	est mart stort, wild adored a	the state of the second	60
102	±1.00	the please of the discoveright	TRUCTURE COLOR IN A	in shandi na sautu by		00
102	±1.00		and the second	exercise class sectors and		Metric
114	±1.00			whave beamined at		
120	±1.00	when makeuked the so	he he hedd ûndet the f			Pipe Size, mm
132	±1.00	Mitty och sala taut, plass	the project in Malay	o na mananan ha ha ha		200
144	±1.00	er	joint: Three types	 adhesiye-bonded- 	gig can to - 17.1 - 2	250
156	±1.00	940 E-101 - 10 - 240 gard	an bristeria and	d benning an all	in behavior	300
100	± 1.00		and the second second second		A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER O	350

^A Inside diameters other than those shown shall be permitted by agreement between purchaser and supplier.

^B Values are taken from International Standards Organization documents. Parentheses indicate non-preferred diameters.

Note 8-See Appendix X1 for derivation of the minimum sanitary sewer pipe chemical requirements given in Table 4.

Note 9-The calculations in Table 4 and Appendix X1 assume that the neutral axis is at the pipe wall midpoint. For pipe wall constructions that produce an altered neutral axis position, it is necessary to evaluate results and establish requirements substituting 2y for t. (y is the maximum distance from the neutral axis to the pipe surface.)

6.3.1.2 Control Requirements-Test pipe specimens periodically in accordance with 8.2.1.3, following the procedure of 8.2.1.4, or alternatively, the procedure of 8.2.1.5.

6.3.1.3 When the procedure of 8.2.1.4 is used, the following three criteria must be met: a) the average failure time at each strain level must fall at or above the lower 95 % confidence limit of the originally determined regression line, b) no specimen-failure times may be sooner than the lower 95 % prediction limit of the originally determined regression line, and c) one-third or more of the specimen failure times must be on or above the originally determined regression line.

NOTE 10-Determine the lower 95 % confidence limit and the lower 95 % prediction limit in accordance with to Annex A2.

6.3.1.4 When the alternative method of 8.2.1.5 is used, failure shall not occur in any specimen.

6.3.2 Industrial Service-The resin component of the liner or of the surface layer, or both, shall be a commercial-grade corrosion-resistant thermoset that has either been evaluated in a laminate by test, in accordance with 8.2.2, or that has been determined by previous documented service to be accer for the service conditions. Where service conditions have been evaluated, a suitable resin may also be selected agreement between the manufacturer and purchaser.

NOTE 11-The results obtained by this test shall serve as a guid in the selection of a pipe material for a specific service application purchaser is cautioned to evaluate all of the various factors that may into the serviceability of a pipe material when subjected to ch environment, including chemical resistance in the strained condition

6.4 Soundness-Unless otherwise agreed upon bet purchaser and supplier, test each length of pipe up to 5 (1370 mm) diameter hydrostatically without leakage or ing, at the internal hydrostatic proof pressures specified applicable class in Table 5Table 7Table 8 when test accordance with 8.3. For sizes over 54 in., the frequent hydrostatic leak tests shall be as agreed upon by purchase supplier.

6.5 Hydrostatic Design Basis:

6.5.1 Long-Term Hydrostatic Pressure-The preclasses shall be based on long-term hydrostatic pressure obtained in accordance with 8.4 and categorized in accord with Table 6. Pressure classes are based on extrap strengths at 50 years. For pipe subjected to longitudinal or circumferential bending, the effect of these conditions hydrostatic design pressure classification of the pipe m considered.

D 3754 – 06

TABLE 3 Nominal Outside Diameters (OD) and Tolerances

Ven—The external diameter of the pipe at the spigots shall be within the tolerances given in the table, and the manufacturer shall declare his allowable minimum and minimum spigot diameters. Some pipes are manufactured such that the entire pipe meets the OD tolerances while other pipes meet the meres at the spigots, in which case, if such pipes are cut (shortened) the ends may need to be calibrated to meet the tolerances.

				. 0.64 (Md)	
Nominal Pipe Size, in.	Steel Pipe Equivalent (IPS) OD's, in.	Tolerance, in.	Cast Iron Pipe Equivalent OD's, in.	(60) 200 (60) 680 (60) 680	Tolerance, in.
8	8.625	+0.086 -0.040	9.05		
10	10.750	+0.108 -0.048	11.10	test student	±0.06
12	12.750	+0.128 -0.056	13.20		
14	14.000	+0.140 -0.062	15.30		
16	16.000	+0.160 -0.070	17.40	440 (2757) 540 (3447)	+0.05
18	porated, from the s	fide lover (iPfileon	19.50 21.60		-0.08
20 24	ar reini ercement, fr atra	pipe wall, coast	25.80	J	
30 36	adas al observation (made)	and the second se	38.30 44.50	28.0	+0.08
42 48	nly, and should not b is are bused on an in-	alite text. Tuble & shine	50.80		-0.06
54 60	a apprentiate uniform- suffices: values (FrA)	col 2 und provide al desses Since the pipe	57.56 61.61		16,200 . 80,808,809 . 000,010 . 9

Metric e Size, mm	Ductile Iron Pipe Equivalent, mm	Tolerance Upper, mm	Tolerance Lower, mm	International O.D., mm	Tolerance Upper, mm	Tolerance Lower, mm
200	220.0	+1.0	0.0	0 (2001) 0 2	97-290 TP-	··· 0200
250	271.8	+1.0	-0.2	0 0000000000000000000000000000000000000	71.400	C256
300	323.8	+1.0 10 10	-0.3	310	+1.0	-1.0
	375.7	+1.0	-0.3	361	+1.0	-1.2
350	426.6	+1.0	-0.3	412	+1.0	-1.4
400	477.6	+1.0	-0.4	463	+1.0	-1.6
450		+1.0	-0.4	514	+1.0	-1.8
500	529.5	+1.0	-0.5	616	+1.0	-2.0
600	632.5	+1.0	0.0	718	+1.0	-2.2
700				820	+1.0	-2.4
800				924	+1.0	-2.6
900				1026	+2.0	-2.6
1000				1229	+2.0	-2.6
1200				1434	+2.0	-2.8
1400				1638	+2.0	-2.8
1600				1842	+2.0	-3.0
1800				2046	+2.0	-3.0
2000				2250	+2.0	-3.2
2200				2453	+2.0	-3.4
2400				2658	+2.0	-3.6
2600				2861	+2.0	-3.8
2800				3066	+2.0	-4.0
3000				3270	+2.0	-4.2
3200				3474	+2.0	-4.4
3400				3678	+2.0	-4.6
3600				3882	+2.0	-4.8
3800				4086	+2.0	-5.0

e ot y

er al

n. xne in of

re ta ce ed ds he be Antimeted of latitud acting and more reminence and takes has lot (5.5.2 Control Requirements—Test pipe spectrums periodecally in hecordance with the reconfirmation procedures described in Tractice (7.2092) with the reconfirmation proceeding acting the reconfirmation of the second second proceeding acting Norm 12—Hydrostatic design basis (HDB—examplated values 1, 59, Norm 12—Hydrostatic design basis (HDB—examplated values 1, 292), where the values of the Proceeding B evaluation required by 8.4 It is proceeding the recondence with proceeding by 8.4 It is proceeding the recondence with procedure A of Practice 1, 292).

🖽 D 3754 – 06

TABLE 4 Minimum Sanitary Sewer Pipe Chemical Requirements

€scv Note-The values in th Minimum Strain Pipe Stiffness, psi (kPa) 100 h 1 000 10 000 50 years 10 h 6 min 0.60 (t/d) 0.78 (t/d) 0.73 (t/d) 0.68 (t/d) 0.84 (t/d) Nominal 9 (62) 0.97 (t/de) 0.49 (t/d) 0.56 (t/d) 18 (124) 0.66 (t/d) 0.61 (t/d) 0.85 (t/d) 0.72 (t/d) Diameter 0.47 (t/d) 0.41 (t/d) 0.60 (t/d) 0.55 (t/d) 0.51 (t/d) C50 36 (248) 0.71 (t/d) (in.) 0.41 (t/d) 0.38 (t/d) 0.34 (t/d) 0.56 (t/d) 0.48 (t/d) 0.44 (t/d) (psi) 72 (496)

Where: t and d are the nominal total wall thickness and the mean diameter (inside diameter plus t) as determined in accordance with 8.1.

TABLE 5 Hydrostatic-Pressure Test

Class	: N 2% 0 27	Hydrostatic Proof Pressure, gage, psi (kPa)
C50	1.00	100 (689)
C100		200 (1379)
C150		300 (2068)
C200		400 (2757)
C250		500 (3447)
C300		600 (4136)
C350		700 (4826)
C400		800 (5515)
C450		900 (6205)

TABLE 6 Long-Term Hydrostatic Pressure Categories

Class	Minimum Calculated Values of Long-Term Hydrostatic Pressure gage, psi (kPa)
C50	90 (621)
C100	180 (1241)
C150	270 (1862)
C200	360 (2482)
C250	450 (3103)
C300	540 (3722)
C350	630 (4343)
C400	720 (4963)
C450	810 (5584)

TABLE 7 Minimum Stiffness at 5 % Deflection

Nominal Diameter, in.		Pipe Stiffne:	ss, psi (kPa)	and the local second
		Desig	nation	the maxim
	А	В	С	D
8		0.54	36 (248)	72 (496)
10	NUMBER OF STREET	18 (124)	36 (248)	72 (496)
12 and greater	9 (62)	18 (124)	36 (248)	72 (496)

TABLE 8 Ring Deflection Without Damage or Structural Failure

	Nominal Pipe Stiffness, psi								
	9	18	36	72					
Level A	18 %	15 %	12 %	9 %					
Level B	30 %	25 %	20 %	15 %					

6.5.2 *Control Requirements*—Test pipe specimens periodically in accordance with the reconfirmation procedures described in Practice D 2992.

NOTE 12—Hydrostatic design basis (HDB—extrapolated value at 50 years) determined in accordance with Procedure A of Practice D 2992, may be substituted for the Procedure B evaluation required by 8.4. It is generally accepted that the Procedure A value multiplied by 3 is equivalent to the Procedure B value.

6.6 *Stiffness*—Each length of pipe shall have suffistrength to exhibit the minimum pipe stiffness ($F/\Delta y$) spec in Table 7 when tested in accordance with 8.5. At defalevel A per Table 8, there shall be no visible damage in the specimen evidenced by surface cracks. At deflection lew per Table 8, there shall be no indication of structural damaevidenced by interlaminar separation, separation of the line surface layer (if incorporated) from the structural wall, the failure of the glass-fiber reinforcement, fracture, or buckling the pipe wall.

NOTE 13—This is a visual observation (made with the unaided equality control purposes only, and should not be considered a simulative service test. Table 8 values are based on an in-use long-term defailimit of 5 % and provide an appropriate uniform safety margin for all stiffnesses. Since the pipe-stiffness values ($F/\Delta y$) shown in Table 7 the percent deflection of the pipe under a given set of instal conditions will not be constant for all pipes. To avoid possible mix cation, take care to analyze all conditions that might affect performant the installed pipe.

6.6.1 For other pipe stiffness levels, appropriate value Level A and Level B deflections (Table 8) may be compute follows:

Level A at new PS = $\left(\frac{72}{\text{new PS}}\right)^{0.33}(9)$

Level B at new PS = new Level A \div 0.6

condition. Rigid joints

8

10

12

14

15

16

18

20

21

24

27

30

33

36

39

42

45

48

51

54

60

66

72

78

84

90

96

102

108

114

120

132

144

800 1000

1200

140

160

180

200 210

240

270

300 330

360

390

420 450

480 510

540

600

660

720

780

840

900

960

10 20

10 80

11 40

12 00

13 20

14 40

6.6.2 Since products may have use limits of other than joints with laminated long-term deflection, Level A and Level B deflections (Tab nated overlay, flange may be proportionally adjusted to maintain equivalent in threaded.

may be proportionally adjusted to maintain equivalent in the detection safety margins. For example, a 4 % long-term limiting deflection would result in a 20 % reduction of Level A and Level A and Level A and Level B deflection values for Level A and Level B deflection values for Level A and Level B deflect pipe sizes larger than shall be equivalent to strains of 0.6 and 1.0 % respectively adequate beam streng pression tests conduction to the streng of the streng adequate beam streng or the streng adequate beam streng adequate beam streng or the streng adequate beam streng adequate beam streng or the streng adequate beam streng adequate beam streng or the streng adequate beam streng or the streng adequate beam streng adequate beam streng or the streng adequate beam streng adequate beam streng or the streng adequate beam streng adeq

6.7 *Hoop-Tensile Strength*—All pipe manufactured respectively, for pipe this specification shall meet or exceed the hoop-tensile strengths dinal direction, using shown for each size and class in Table 9 and Table 10, strengths specified in tested in accordance with 8.6. 6.9.2 *Longitudinal*

6.7.1 Alternative Requirements—When agreed upon by under this specification purchaser and the supplier, the minimum hoop tensile strengt elongation at failure that the strengt tudinal tensile streng

6.8 Joint Tightness—All joints shall meet the labora 12 and Table 13, which performance requirements of Specification D 4161. U NOTE 14—The values strained joints shall be tested with a fixed end closure cond products made to this sta and restrained joints shall be tested with a free end clo axial strength of some products and products and products and products and products strength of some products and products and products and products are producted by the product of the product

€ D 3754 – 06

TABLE 9 Minimum Hoop Tensile Strength of Pipe Wall

In-The values in this table are equal to 2PD, where P is the pressure class in psi and D is the nominal diameter in inches.

-			(11)		1	d Units		helder		-1112-n)
Nominal	C400	C350 (101	00630	Hoop Ter	nsile S	Strength, Ibf/in.	Width	6010 sma		
lameter _					Pres	sure Class		-530		(136)
(in.)	C50 (psi)	C100 (psi)	C150 (psi)	C200 (psi)	bat) Silto	C250 (psi)	C300 (psi)	C350 (psi)	C400 (psi)	C450 (psi)
8	800	1600	2400	3200	510	4000	4800	5600	6400	720
10	1000	2000	3000	4000		5000	6000	7000	8000	900
12	1200	2400	3600	4800		6000	7200	8400	9600	10 80
14	1400	2800	4200	5600		7000	8400	9800	11 200	12 60
15	1500	3000	4500	6000		7500	9000	10 500	12 000	13 50
16	1600	3200	4800	6400		8000	9600	11 200	12 800	14 40
18	1800	3600	5400	7200		9000	10 800	12 600	14 400	16 20
20	2000	4000	6000	8000		10 000	12 000	14 000	16 000	18 00
21	2100	4200	6300	8400		10 500	12 600	14 700	16 800	18 90
24	2400	4800	7200	9600		12 000	14 400	16 800	19 200	21 60
27	2700	5400	8100	10 800		13 500	16 200	18 900	21 600	24 30
30	3000	6000	9000	12 000		15 000	18 000	21 000	24 000	27 00
33	3300	6600	9900	13 200		16 500	19 800	23 100	26 400	29 70
36	3600	7200	10 800	14 400		18 000	21 600	25 200	28 800	32 40
39	3900	7800	11 700	15 600		19 500	23 400	27 300	31 200	35 10
42	4200	8400	12 600	16 800		21 000	25 200	29 400	33 600	37 80
45	4500	9000	13 500	18 000		22 500	27 000	31 500	36 000	40 50
48	4800	9600	14 400	19 200		24 000	28 800	33 600	38 400	43 200
51	5100	10 200	15 300	20 400		25 500	30 600	35 700	40 800	45 900
54	5400	10 800	16 200	21 600		27 000	32 400	37 800	43 200	48 600
60	6000	12 000	18 000	24 000		30 000	36 000	42 000	48 000	54 000
66	6600	13 200	19 800	26 400		33 000	39 600	46 200	52 800	59 400
72	7200	14 400	21 600	28 800		36 000	43 200	50 400	57 600	64 800
78	7800	15 600	23 400	31 200		39 000	46 800	54 600	62 400	70 200
34	8400	16 800	25 200	33 600		42 000	50 400	58 800	67 200	75 600
90	9000	18 000	27 000	36 000		45 000	54 000	63 000	72 000	81 000
96	9600	19 200	28 800	38 400		48 000	57 600	67 200	76 800	86 400
)2	10 200	20 400	30 600	40 800		51 000	61 200	71 400	81 600	91 800
08	10 800	21 600	32 400	43 200		54 000	64 800	75 600	86 400	97 200
14	11 400	22 800	34 200	45 600		57 000	68 400	79 800	91 200	10 2600
20	12 000	24 000	36 000	48 000		60 000	72 000	84 000	96 000	108 000
32	13 200	26 400	39 600	52 800		66 000	79 200	92 400	105 600	118 800
14	14 400	28 800	43 200	57 600		72 000	86 400	100 800	115 200	129 600
6	15 600	31 200	46 800	62 400		78 000	93 600	109 200	124 800	140 400

ration. Rigid joints shall be exempt from angular deflection wirements of D4161. Rigid joints typically include butt it with laminated overlay, bell-and-spigot joints with lamirad overlay, flanged, bell-and-spigot adhesive bonded and raded.

69 Longitudinal Strength: :

ent ied ion test B as or sile of

for ted ion ipe ury, ion oliof

or as

(1)

8)

c-

B

a

IS

IS

er

h

n

e

69.1 Beam Strength—For pipe sizes up to 27 in. (686 mm), a pipe shall withstand, without failure, the beam loads taffed in Table 11, when tested in accordance with 8.7.1. For a sizes larger than 27 in., and alternatively for smaller sizes, data beam strength is demonstrated by tensile and comresion tests conducted in accordance with 8.7.2 and 8.7.3 spectively, for pipe wall specimens oriented in the longitural direction, using the minimum tensile and compression tagts specified in Table 11.

69.2 Longitudinal Tensile Strength—All pipe manufactured ther this specification shall have a minimum axial tensile ingation at failure of 0.25% and meet or exceed the longifinal tensile strength shown for each size and class in Table and Table 13, when tested in accordance with 8.7.2.

km l4—The values listed in Table 12 are the minimum criteria for rdxts made to this standard. The values may not be indicative of the adsteagth of some products, or of the axial strength required by some installation conditions and joint configurations.

6.9.3 Conformance to the requirements of 6.9.1 shall satisfy the requirements of 6.9.2 for those pipe sizes and classes where the minimum longitudinal tensile strength values of Table 11 are equal to the values of Table 12. Conformance to the requirements of 6.9.2 shall satisfy the longitudinal tensile strength requirements of 6.9.1.

7. Sampling

7.1 Lot—Unless otherwise agreed upon by the purchaser and the supplier, one lot shall consist of 100 lengths of each type, grade, and size of pipe produced.

7.2 *Production Tests*—Select one pipe at random from each lot and take one specimen from the pipe barrel to determine conformance of the material to the workmanship, dimensional, and strength requirements of 6.1, 6.2, 6.6, and 6.7 respectively. Unless otherwise agreed upon between purchaser and supplier, all pipes (up to 54 in. diameter) shall meet the soundness requirements of 6.4.

7.3 *Qualification Tests*—Sampling for qualification tests is not required unless otherwise agreed upon by the purchaser and the supplier. Qualification tests, for which a certification and

🕼 D 3754 – 06

TABLE 10 Minimum Hoop Tensile Strength of Pipe Wall

	and inclusion.			SIL	Inits	Area about	the atte equility	a sid ai soali	n of Tank	Nominal
Man Shorels			ŀ	Hoop Tensile Stre	ngth N/mm Widt	า				Diameter, in.
Pressure Class	C50	C100	C150	C200	C250	C300	C350	C400	C450	
Nominal Diameter (mm)	345 (kPa)	689 (kPa)	1034 (kPa)	1379 (kPa)	1724 (kPa)	2069 (kPa)	2414 (kPa)	2759 (kPa)	3103 (kPa)	12 14 15
200	138	276	414	552	690	828	966	1104	1241	036 16
250	173	345	517	690	862	1035	1207	1380	1552	18
300	207	413	620	827	1034	1241	1448	1655	1862	20
350	242	482	724	965	1207	1448	1690	1931	2172	008 21
375	259	517	776	1034	1293	1552	1811	2069	2327	24
400	276	551	827	1103	1379	1655	1931	2207	2482	27
400	311	620	931	1241	1552	1862	2173	2483	2793	30
500	345	689	1034	1379	1724	2069	2414	2759	3103	33
550	380	758	1137	1517	1896	2276	2655	3035	3413	36
600	414	827	1241	1655	2069	2483	2897	3311	3724	39
700	483	965	1448	1931	2414	2897	3380	3863	4344	42
750	518	1034	1551	2069	2586	3104	3621	4139	4655	0200 45
850	587	1171	1758	2344	2931	3517	4104	4690	5275	48
900	621	1240	1861	2482	3103	3724	4345	4966	5585	51
1000	690	1378	2068	2758	3448	4138	4828	5518	6206	088 54
1100	759	1516	2275	3034	3793	4552	5311	6070	6827	60
1150	794	1585	2378	3172	3965	4759	5552	6346	7137	66
1200	828	1654	2482	3310	4138	4966	5794	6622	7447	72
1300	897	1791	2688	3585	4482	5379	6276	7173	8068	01 <u>5</u> 8 78
1400	966	1929	2895	3861	4827	5793	6759	7725	8688	84
1500	1035	2067	3102	4137	5172	6207	7242	8277	9309	90
1700	1173	2343	3516	4689	5862	7035	8208	9381	10 550	96
1800	1242	2480	3722	4964	6206	7448	8690	9932	11 171	102
2000	1380	2756	4136	5516	6896	8276	9656	11 036	12 412	108
2200	1518	3032	4550	6068	7586	9104	10 622	12 140	13 653	114
2300	1587	3169	4756	6343	7930	9517	11 104	12 691	14 274	120
2400	1656	3307	4963	6619	8275	9931	11 587	13 243	14 894	132
2600	1794	3583	5377	7171	8965	10 759	12 553	14 347	16 136	144
2800	1932	3858	5790	7722	9654	11 586	13 518	15 450	17 377	156
2900	2001	3996	5997	7998	9999	12 000	14 001	16 002	17 997	088 11 980
3000	2070	4134	6204	8274	10 344	12 414	14 484	16 554	18 618	
3400	2346	4685	7031	9377	11 723	14 069	16 415	18 761	21 100	
3600	2484	4961	7445	9929	12 413	14 897	17 381	19 865	22 342	8.1.4 Squar
4000	2760	5512	8272	11 032	13 792	16 552	19 312	22 072	24 824	mandrel or tru
4000	2700	5512	0212	11 002	10 7 52	10 002	10 012			dial indicator

test report shall be furnished when requested by the purchaser, include the following:

7.3.1 Sanitary sewer service, long-term chemical test.

7.3.2 Industrial service resin component chemical test. A copy of the resin manufacturer's test report may be used as the basis of acceptance for this test as agreed upon by the purchaser and the supplier.

7.3.3 Long-term hydrostatic pressure test.

7.3.4 Joint-tightness test, see 6.8.

7.3.5 Longitudinal strength test, including:

7.3.5.1 Beam strength, and

7.3.5.2 Longitudinal tensile strength.

7.4 *Control Tests*—The following tests are considered control requirements and shall be performed as agreed upon between the purchaser and the supplier.

7.4.1 Soundness Test-60 in. (1524 mm) diameter pipe and larger

7.4.2 Perform sampling and testing for the control requirements for sanitary sewer service at least once annually.

7.4.3 Perform sampling and testing for the control requirements for hydrostatic design basis at least once every two years. 7.5 For individual orders, conduct only those addition tests and number of tests specifically agreed upon betwee purchaser and supplier.

8. Test Methods

8.1 Dimensions:

8.1.1 Diameters:

8.1.1.1 *Inside Diameter*—Take inside diameter means ments at a point approximately 6 in. (152 mm) from the end the pipe section using a steel tape or an inside micrometer graduations of $\frac{1}{16}$ in. (1 mm) or less. Take two 90° oppor measurements at each point of measurement and average readings.

8.1.1.2 *Outside Diameter*—Determine in accordance Test Method D 3567.

8.1.2 Length—Measure with a steel tape or gage has graduations of $\frac{1}{16}$ in. (1 mm) or less. Lay the tape or gage or inside the pipe and measure the overall laying length of pipe.

8.1.3 *Wall Thickness*—Determine in accordance with Method D 3567.

8.1.4 Squarene, mandrel or trunion dial indicator. The distance from a pl the pipe. Alternativ rigidly fixed by reinspected at int squareness of the

8.2 Chemical T

8.2.1 Sanitary-S with Test Method 8.2.1.1 Long-Te

ments of 6.3.1, de dance with Test N 8.2.1.2 Alterna

specimens each at in Table 4 and test minimum strains qualified if all 18 least the prescribe 1000 or 10 000 h

8.2.1.3 *Control* in accordance with the results.

8.2.1.4 Test at le corresponding to t product's regression

D 3754 - 06

TABLE 11	Beam St	trength T	est	Loads	
----------	---------	-----------	-----	-------	--

Nominal Diameter,		Beam Loa	Mi	Minimum Longitudinal Tensile Strength, per Unit of Circumference			Minimum Longitudinal Compressive Strength, per Unit of Circumference			
in.		lbf	(kN)		lbf/in.	(kN/m)		lbf/in.	(kN/m)	
8		800	(3.6)	COLL OF SHI	580	(102)		580	(102)	
10		1200	(5.3)		580	(102)		580	(102)	
12		1600	(7.1)		580	(102)		580	(102)	
14		2200	(9.8)		580	(102)		580	(102)	
15		2600	(11.6)		580	(102)		580	(102)	
16		3000	(13.3)		580	(102)		580	(102)	
18		4000	(17.8)		580	(102)		580	(102)	
20		4400	(19.6)		580	(102)		580	(102)	
21		5000	(22.2)		580	(102)		580	(102)	
24		6400	(28.5)		580	(102)		580	(102)	
27		8000	(35.6)		580	(102)		580	(102)	
30		101			580	(102)		580	(102)	
33		102nore 103	2 00.00		640	(111)		640	(111)	
36		102pare 10	7		700	(122)		700	(122)	
39		102	2 0300 183		780	(137)		780	(137)	
42		100	7 271.9. 208		800	(140)		800	(140)	
45		1004 1005			860	(150)		860	(150)	
48		110aves 16			920	(161)		920	(161)	
51		120	3 5000 774		980	(171)		980	(171)	
54		130	0 0.000 0.007		1040	(182)		1040	(182)	
60		140	S 821.9 . 320		1140	(200)		1140	(200)	
66		150 19ex 22	0 0000 0000		1260	(220)		1260	(220)	
72		190	a acto - 203		1360	(238)		1360	(238)	
78		110	S 03.44		1480	(260)		1480	(260)	
84		180	4 5234 411		1600	(280)		1600	(280)	
90		200			1720	(301)		1720	(301)	
96			5 RANA 458		1840	(322)		1840	(322)	
102		245 NT-6 30	6 0000 - 511		1940	(340)		1940	(340)	
102					2060	(360)		2060	(360)	
114		279 6166 279 6865	9 0708 . 525 9 8564 . 506		2180	(382)		2180	(382)	
120		255			2280	(400)		2280	(400)	
132			5 8509 · 500		2520	(440)		2520	(440)	
144					2740	(480)		2740	(480)	
144		353 <u>6568</u> 51	1 0000. 786		2964	(519)		2964	(519)	

1.4 Squareness of Pipe Ends—Rotate the pipe on a undel or trunions and measure the runout of the ends with a lindicator. The total indicated reading is equal to twice the kance from a plane perpendicular to the longitudinal axis of wipe. Alternatively, when the squareness of the pipe ends is gilly fixed by tooling, the tooling may be verified and expected at intervals frequent enough to assure that the gareness of the pipe ends is maintained within tolerance. We Chemical Tests:

12.1 Sanitary-Sewer Service—Test the pipe in accordance hTest Method D 3681.

121.1 Long-Term—To find if the pipe meets the requireats of 6.3.1, determine at least 18 failure points in accorwe with Test Method D 3681.

2.1.2 Alternative Qualification Procedure—Test four ramens each at the 10 and 10 000 h minimum strains given table 4 and test five specimens each at the 100 and 1000 h trimum strains given in Table 4. Consider the product affed if all 18 specimens are tested without failure for at at the prescribed times given in Table 4 (that is, 10, 100, W or 10 000 h respectively).

12.1.3 *Control Requirements*—Test at least six specimens accordance with one of the following procedures and record presults.

g

n

e

st

12.1.4 Test at least 3 specimens at each of the strain levels responding to the 100- and 1000-h failure times from the rout's regression line established in 8.2.1.

8.2.1.5 When the alternative method described in 8.2.1.2 is used to qualify the product, test at least three specimens each at the 100 and 1000 h minimum strains given in Table 4 for at least 100 and 1000 h respectively.

8.2.1.6 The control test procedures of 8.2.1.5 may be used as an alternative procedure to the reconfirmation procedure described in Test Method D 3681 for those products evaluated by the alternative qualification procedure described in 8.2.1.2.

8.2.2 *Industrial Service*—The resin component of the liner or of the surface layer, or both, to be subjected to an aggressive service environment, shall be tested in accordance with Test Method C 581, except that the specimens tested shall be representative of the laminate construction used in the liner or surface layer, or both.

8.3 Soundness—Determine soundness by a hydrostatic proof test procedure. Place the pipe in a hydrostatic pressure testing machine that seals the ends and exerts no end loads. Fill the pipe with water, expelling all air, and apply internal water pressure at a uniform rate not to exceed 50 psi (345 kPa)/s until the test pressure shown in Table 5 for the applicable class is reached. Maintain this pressure for a minimum of 30 s. The pipe shall show no visual signs of weeping, leakage, or fracture of the structural wall.

8.4 Long-Term Hydrostatic Pressure—Determine the longterm hydrostatic pressure at 50 years in accordance with Procedure B of Practice D 2992, with the following exceptions permitted:

D 3754 - 06

TABLE 12 Longitudinal Tensile Strength of Pipe Wall

project on	Except 1		Beam Lo		Jnits	Inch-Pound				
values of	ALL STREET		1.01	Circumference	rength lbf/in. of	tudinal Tensile St	Longi		- period -	
Pressure	Pressure Class									Nominal Diameter
Class	C450	C400	C350	C300	C250	C200	C150	C100	C50	(in.)
Nomina	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	0000
Diamete (mm)	900	800	700	624	580	580	580	580	580	8
	1125	1000	875	780	650	580	580	580	580	10
200	1350	1200	1050	936	780	624	580	580	580	12
250	1575	1400	1225	1092	910	728	609	580	580	14
300	1688	1500	1313	1170	975	780	653	580	580	15
350	1800	1600	1400	1248	1040	832	696	580	580	16
375	2025	1800	1575	1404	1170	936	783	580	580	18
400	2250	2000	1750	1560	1300	1040	870	580	580	20
450	2363	2100	1838	1638	1365	1092	914	609	580	21
500	2700	2400	2100	1800	1560	1248	1044	696	580	24
550	3038	2700	2363	2025	1688	1404	1175	783	580	27
600	3375	3000	2625	2250	1875	1560	1305	870	580	30
700	3713	3300	2888	2475	2063	1716	1436	957	627	33
750	4050	3600	3150	2700	2250	1800	1566	1044	684	36
850	4212	3744	3276	2808	2340	1872	1697	1131	741	39
900	4536	4032	3528	3024	2520	2016	1827	1218	798	42
1000	4860	4320	3780	3240	2700	2160	1958	1305	855	45
1100	5184	4608	4032	3456	2880	2304	2088	1392	912	48
1150	5508	4896	4284	3672	3060	2448	2219	1479	969	51
1200	5589	4968	4347	3726	3240	2592	2349	1566	1026	54
1300	6210	5520	4830	4140	3600	2880	2520	1740	1140	60
1400	6534	5808	5313	4554	3795	3036	2673	1914	1254	66
1500	7128	6336	5796	4968	4140	3312	2916	2088	1368	72
1700	7722	6864	6006	5148	4290	3432	3159	2106	1482	78
1800	7938	7056	6174	5292	4620	3696	3402	2268	1596	84
2000	8303	7380	6615	5670	4950	3960	3645	2430	1710	
2200	8640	7680	7056	6048	5280	4224	3888	2592	1824	90 96
2300	9180	8160	7497	6426	5610	4488	4131	2754		
2400	9720	8640	7938	6804	5940	4400	4374		1938	102
2600	10 260	9120	8379	7182	6270	5016	4374 4617	2916 3078	2052 2166	108
2800	10 20	9120	8820	7560	6600	5280	4617 4860			114
2900	11 880	10 560	9702	8316	7260			3240	2280	120
3000	12 960	11 520	10 584			5808	5346	3564	2508	132
3400	12 900	12 480	10 584	9072 9828	7920	6336	5832	3888	2736	144
3600	14 040	12 400	11 400	9020	8580	6864	6318	4212	2964	156

8.4.1 Test at ambient temperatures within the limits of 50° F (10°C) and 110°F (43.5°C) and report the temperature range experienced during the tests.

NOTE 15—Tests indicate no significant effects on long-term hydrostatic pressure within the ambient temperature range specified.

8.4.2 Determine the hydrostatic design basis for the glassfiber reinforcement in accordance with the method in Annex A1.

8.4.3 Calculate the long-term hydrostatic pressure and categorize by class in accordance with Table 6. Annex A1.6 explains how to calculate the long-term hydrostatic pressure.

8.5 *Stiffness*—Determine the pipe stiffness $(F/\Delta y)$ at 5% deflection for the specimen, using the apparatus and procedure of Test Method D 2412, with the following exceptions permitted:

8.5.1 Measure the wall thickness to the nearest 0.01 in. (0.25 mm).

8.5.2 Load the specimen to 5 % deflection and record the load. Then load the specimen to deflection level A per Table 8 and examine the specimen for visible damage evidenced by surface cracks. Then load the specimen to deflection level B per Table 8 and examine for evidence of structural damage, as evidenced by interlaminar separation, separation of the liner or

surface layer (if incorporated) from the structural wall, the failure of the glass-fiber reinforcement, fracture, or buckling the pipe wall. Calculate the pipe stiffness at 5 % deflection 8.5.3 For production testing, only one specimen need

tested to determine the pipe stiffness.

8.5.4 The maximum specimen length may be 12 in (mm), or the length necessary to include stiffening ribs if are used, whichever is greater.

NOTE 16—As an alternative to determining pipe stiffness using apparatus and procedure of Test Method D 2412, the supplier may solve to the purchaser for approval a test method and test evaluation based. Test Method D 790 accounting for the substitution of curved test speness and measurement of stiffness at 5 % deflection.

8.6 Hoop-Tensile Strength—Determine hoop ten strength by Test Method D 2290, except that the section apparatus and test specimens may be modified to suit the of the specimens to be tested, and the maximum load rater not exceed 0.10 in./min (2.54 mm/min). Alternatively, Method D 638 may be employed. Specimen width ma increased for pipe wall thickness greater than 0.55 in (I mm). Means may be provided to minimize the ben moment imposed during the test. Three specimens shall be from the test sample. Record the load to fail each specimen determine the spee Use the measure hoop-tensile stren

4000

8.6.1 Alternat. Requirement—As strength values n following formula

where:

F = required m

- S_i = initial desi
- S_r = hoop tensil P = rated operation

r = inside radi

The value for Svariations in glass methods, but in a lower confidence v manufacturer's tes value for S_r shou

hydrostatic design Note 17—A value

🖽 D 3754 – 06

TABLE 13 Longitudinal Tensile Strength of Pipe Wall

				SI Units	mment. leg				
of Py ho		Herwieldsbergen.	Longitudinal Te	ensile Strength I	N/mm of Circum	ierence	aliability sel	scred.	
Pressure Class	C50	C100	C150	C200	C250	C300	C350	C400	C450
Nominal Diameter	345 (kPa)	689 (kPa)	1034 (kPa)	1379 (kPa)	1724 (kPa)	2069 (kPa)	2414 (kPa)	2759 (kPa)	3103 (kPa)
(mm)	((<u>-</u> ,	((((()	()	(
200	102	102	102	102	102	109	123	140	158
250	102	102	102	102	114	137	153	175	197
300	102	102	102	109	137	164	184	210	236
350	102	102	107	127	159	191	215	245	276
375	102	102	114	137	171	205	230	263	296
400	102	102	122	146	182	219	245	280	315
450	102	102	137	164	205	246	276	315	355
500	102	102	152	182	228	273	306	350	394
550	102	107	160	191	239	287	322	368	414
600	102	122	183	219	273	315	368	420	473
700	102	137	206	246	296	355	414	473	532
750	102	152	229	273	328	394	460	525	591
850	110	168	251	301	361	433	506	578	650
900	120	183	274	315	394	473	552	630	709
1000	130	198	297	328	410	492	574	656	738
1100	140	213	320	353	441	530	618	706	794
1150	150	229	343	378	473	567	662	757	851
1200	160	244	366	403	504	605	706	807	908
1300	170	259	388	429	536	643	750	857	965
1400	180	274	411	454	567	652	761	870	979
1500	200	305	441	504	630	725	846	967	1087
1700	220	335	468	532	665	797	930	1017	1144
1800	240	366	511	580	725	870	1015	1110	1248
2000	260	369	553	601	751	902	1052	1202	1352
2200	279	397	596	647	809	927	1081	1236	1390
2300	299	426	638	693	867	993	1158	1292	1454
2400	319	454	681	740	925	1059	1236	1345	1513
2600	339	482	723	786	982	1125	1313	1429	1608
2800	359	511	766	832	1040	1192	1390	1513	1702
2900	379	539	809	878	1098	1258	1467	1597	1797
3000	399	567	851	925	1156	1324	1545	1681	1891
3400	439	624	936	1017	1271	1456	1699	1849	2080
3600	479	681	1021	1110	1387	1589	1853	2017	2270
4000	519	738	1106	1202	1503	1721	2008	2185	2459

attentine the specimen width as close to the break as possible. We the measured width and failure load to calculate the mp-tensile strength.

8.6.1 Alternative Minimum Hoop-Tensile Strength liquirement—As an alternative, the minimum hoop-tensile stright values may be determined through the use of the illowing formula:

$$= (S_i/S_r) (P_r)$$

where:

of

be

)5

ey

he

on

ci-

n

ze

y

st

be

)7

g

ut

d

= required minimum hoop-tensile strength, lbf/in.,

= initial design hoop tensile stress, psi,

= hoop tensile stress at rated operating pressure, psi,

= rated operating pressure class, psi, and

= inside radius of pipe, in.

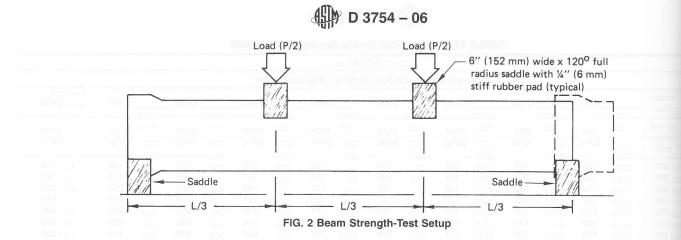
The value for S_i should be established by considering the values for S_i should be established by considering the values in glass reinforcement strength and manufacturing wholes, but in any case, should not be less than the 95 % were confidence value on stress at 0.1 h, as determined by the mufacturer's testing carried out in accordance with 6.5. The due for S_r should be established from the manufacturer's trostatic design basis.

Note 17—A value of F less than 4 Pr results in a lower factor of safety

on short term loading than required by the values in Table 9.

8.7 Longitudinal Strength :

8.7.1 *Beam Strength*—Place a 20-ft (6.1-m) nominal length of pipe on saddles at each end. Hold the ends of the pipe round during the test. Apply the beam load for the diameter of pipe shown in Table 11 simultaneously to the pipe through two saddles located at the third points of the pipe (see Fig. 2). Maintain the loads for not less than 10 min with no evidence of failure. The testing apparatus shall be designed to minimize stress concentrations at the loading points.


8.7.2 Longitudinal Tensile Strength—Determine in accordance with Test Method D 638, except the provisions for maximum thickness shall not apply.

8.7.3 *Longitudinal Compressive Strength*—Determine in accordance with Test Method D 695.

9. Packaging, Marking, and Shipping

9.1 Mark each length of pipe that meets or is part of a lot that meets the requirements of this specification at least once, in letters not less than $\frac{1}{2}$ in. (12 mm) in height and of bold-type style in a color and type that remains legible under normal handling and installation procedures. Include in the marking the nominal pipe size, manufacturer's name or trademark,

(2)

ASTM Specification number D 3754, type, liner, grade, class, and stiffness in accordance with the designation code in 4.2.

9.2 Prepare pipe for commercial shipment in such a way as to ensure acceptance by common or other carriers.

9.3 All packing, packaging, and marking provisions of Practice D 3892 shall apply to this specification.

10. Keywords

10.1 fiberglass pipe; sewer pipe; industrial pipe; pressu pipe; strain corrosion; hydrostatic design basis

ANNEXES

(Mandatory Information)

A1. ALTERNATIVE HYDROSTATIC DESIGN METHOD

A1.1 The following symbols are used:

S = tensile stress in the glass-fiber reinforcement in the hoop orientation corrected for the helix angle, psi,

P = internal pressure, psig,

 P_l = long-term hydrostatic pressure, psig,

D = nominal inside pipe diameter, in.,

 t_h = actual cross-sectional area of glass-fiber reinforcement applied around the circumference of the pipe, in.²/in.,

 θ = plane angle between hoop-oriented reinforcement and longitudinal axis of the pipe (helix angle), and

HDB = hydrostatic design basis, psi.

A1.2 The hydrostatic design is based on the estimated tensile stress of reinforcement in the wall of the pipe in the circumferential (hoop) orientation that will cause failure after 50 years of continuously applied pressure, as described in 8.4 and Practice D 2992, Procedure B. Strength requirements are calculated using the strength of hoop-oriented glass reinforcements only, corrected for the helix angle of the fibers.

A1.3 *Hoop-Stress Calculation*, derived from the ISO formula for hoop stress, is as follows:

 $S = PD/2(t_h \sin \theta)$

This stress is used as the ordinate (long-term strength) in calculating the regression line and lower confidence limit in accordance with Practice D 2992, Annexes A1 and A3.

Note A1.1—The calculated result for S may be multiplied by the factor 6.985 to convert from psi to kPa.

TABLE A1.1 Long-Term Hydrostatic Pressure Categori						
Class	Minimum Calculated Values d Long-Term Hydrostatic Pressure gage, psi (kPa)					
C50	90 (621)					
C100	180 (1241)					
C150	270 (1862)					
C200	360 (2482)					
C250	450 (3103)					
C300	540 (3722)					
C350	630 (4343)					
C400	720 (4963)					
C450	810 (5584)					

A1.4 *Hydrostatic Design Basis*—The value of *S* is det mined by extrapolation of the regression line to 50 year accordance with Practice D 2992.

A1.5 *Hydrostatic Design Basic Categories*—Convert value of the HDB to internal hydrostatic pressure in psig follows:

 $P_1 = 2 (t_h \sin \theta) (\text{HDB})/D$

The pipe is categorized in accordance with Table A1.1.

NOTE A1.2—The calculated result P_1 may be multiplied by the i 6.895 to convert from psig to kPa.

A1.6 *Pressure Class Rating*—The classes shown in T A1.1 are based on the intended working pressure in psig commonly encountered conditions of water service. The chaser should determine the class of pipe most suitable to installation and project on when values of P_1 selected for the of conditions. It testing variable manufacture, devaluation pro-

A

X1.1 From M ing strain is give acceptance that 5% deflection strain may be ex

Using the AW of 1.50, the min lated to 50 years

X1.2 The sha stiffness and the backfill density, of figuration, native Assuming conser compaction with term deflections to selected to be read ing these values minimum required and in Table 4.

Pipe Stiffness (psi)

9	
18	
36	
72	

sulation and operating conditions that will exist on the next on which the pipe is to be used by multiplying the des of P_1 from Table A1.1 by a service (design) factor deted for the application on the basis of two general groups (anditions. The first group considers the manufacturing and sing variables, specifically normal variations in the material, mufacture, dimensions, good handling techniques, and in the relation procedures in this method. The second group

considers the application or use, specifically installation, environment, temperature, hazard involved, life expectancy desired, and the degree of reliability selected.

NOTE A1.3—It is not the intent of this standard to give service (design) factors. The service (design) factor should be selected by the design engineer after evaluating fully the service conditions and the engineering properties of the specific pipe material under consideration. Recommended service (design) factors will not be developed or issued by ASTM.

A2. CALCULATIONS OF LOWER CONFIDENCE (LCL) AND LOWER PREDICTION (LPL) LIMITS

 $h_{LCL} = (a + bf_o) - ts \sqrt{\frac{f_o - F)^2}{U} + \frac{1}{N}}$ $h_{LPL} = (a + bf_o) - ts \sqrt{\frac{(f_o - F)^2}{U} + \frac{1}{N} + 1}$

sure

eter-

s in

the

g as

actor

for

ourthe where all symbols are as defined in Annexes A1 and A3 of Practice D 2992 except:

 $f_o = \log \text{ of stress (strain) level of interest}$

NOTE A2.1—Of the expected failures at stress (strain) f_o 97.5 % will occur after h_{LPL} . The average failure time at stress (strain) f_o will occur later than h_{LCL} 97.5 % of the time.

APPENDIXES

(Nonmandatory Information)

X1. STRAIN CORROSION PERFORMANCE REQUIREMENTS

XI.1 From Molin and Leonhardt, the expression for bendsystain is given as: $\epsilon_b = D_f(t/d) (\delta v/d)$. With the common mepance that these pipes must be capable of withstanding 4% deflection long-term, the maximum installed bending tim may be expressed as:

 $\epsilon_b \max = (0.05) (D_f) (t/d)$

Using the AWWA C-950 long-term bending factor of safety (150, the minimum strain corrosion performance extrapoand to 50 years must be:

$$E_{scv} \ge (0.075) (D_f) (t/d)$$

XI.2 The shape factor, D_f , is dependent on both the pipe iffness and the installation (for example, backfill material, wtfill density, compaction method, haunching, trench conigration, native-soil characteristics and vertical loading). Issuming conservatively, installations achieved by tamped impaction with inconsistent haunching that will limit longrm deflections to 5 %, the following values of D_f have been elected to be realistic, representative and limiting. Substituting these values in the above equation for E_{SCV} yields the minum required strain corrosion performances given below addin Table 4.

Pipe Stiffness (psi)	D_{f}	Minimum E _{SCV} Performance
9	8.0	0.60 (<i>t/d</i>)
18	6.5	0.49 (t/d)
36	5.5	0.41 (<i>t/d</i>)
72	4.5	0.34 (<i>t/d</i>)

NOTE X1.1—Products may have used limits of other than 5 % longterm deflection. In such cases, the requirements should be proportionally adjusted. For example, a 4 % long-term limiting deflection would result in a 50 year requirement of 80 % of Table 4, while a 6 % limiting deflection would yield a requirement of 120 % of Table 4.

X1.3 Alternative Strain Corrosion Test Requirements:

X1.3.1 At 0.1 h (6 min), the required strain corrosion performance is based on the level B deflections from Table 6 as follows:

$$\epsilon \text{ test} \ge Df \left[\frac{t}{Id + \delta V/2} \right] \left[\frac{\delta V}{d + \delta V/2} \right]$$
 (X1.1)

or

$$\epsilon$$
 test $\geq Df(t/d)(\delta V/d)\left(\frac{1}{1+\delta V/2d}\right)^2$ (X1.2)

Df for parallel plate loading is 4.28. Making the other substitutions yield:

Pipe Stiffness (psi)	Level B $\delta v / d$ (%)	Minimum Test	
9	30	0.97 (<i>t/d</i>)	
18	25	0.85 (t/d)	
36	20	0.71 (t/d)	
72	15	0.56 (t/d)	

X1.3.2 The minimum strain values at 10, 100, 1000, and 10 000 h given in Table 4 are defined by a straight line connecting the points at 6 min and 50 years on a log-log plot.

D 3754 - 06

X2. INSTALLATION

X2.1 This specification is a material performance and purchase specification only and does not include requirements for engineering design, pressure surges, bedding, backfill, or the relationship between earth cover load, and the strength of the pipe. However, experience has shown that successful performance of this product depends upon the proper type of bedding and backfill, pipe characteristics, and care in the construction work. The purchaser of the fiberglass prex pipe specified herein is cautioned that he must prove correlate the field requirements with the pipe requirements provide adequate inspection at the job site.

X3. RECOMMENDED METHODS OF DETERMINING GLASS CONTENT

X3.1 Determine glass content as follows:

X3.1.1 By ignition loss analysis in accordance with Test Method D 2584 or ISO 1172.

X3.1.2 As a process control, by weight of the glass h reinforcement applied by machine into the pipe structure.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

shape factor, D_{e} is dependent on both the pipe the installation (for example, bankfill material, by compaction method, baunching, teach comarive-soil characteristics and vertical loading). Deservatively, installations achieved by tumped and mean installations achieved by tumped and mean installations of D_{e} have been as to 5 %, the following values of D_{e} have been realistic, representative and initiang. Substitutture in the above equation for E_{erre} vields the

Narg. A ministra adadated adada. Ay may be multiple 6.205 warming theory pilg, to take a second to the second to the

A 1.600 00.6 or Clinis RamPd The chuses she ALI along the the introded working pressure comments secondared combines of water servic shows should determine the class of pipe post an

Sta Un Fik

This sorigin

This :

1. Scope*

1.1 This practic pressure and nonthermosetting-resiconditions. Including pipe, joining monitoring deflect fiberglass pipe in

1.2 Product star range of product v (25 mm to 4000 r 72 psi (60 to 500 several thousand does not purport to pipe, soil types, an The recommendat or expanded to me In particular, fiber, generally so stiff dance with differe facturer for guidar particular pipes.

1.3 The scop performance criter mum service defl eters may be co specifications, or b the specified produ and ensure that th when installed in practice, will prov accordance with c

Note 1—There is Note 2—A discus tion of a simplified r AWWA Manual of P

¹ This practice is und is the direct responsibil Systems and Chemical Current edition app approved in 1979. Last